On $\mathbb{Z}G$-clean rings

نویسنده

چکیده مقاله:

Let $R$ be an associative ring with unity. An element $x \in R$ is called $\mathbb{Z}G$-clean if $x=e+r$, where $e$ is an idempotent and $r$ is a $\mathbb{Z}G$-regular element in $R$. A ring $R$ is called $\mathbb{Z}G$-clean if every element of $R$ is $\mathbb{Z}G$-clean. In this paper, we show that in an abelian $\mathbb{Z}G$-regular ring $R$, the $Nil(R)$ is a two-sided ideal of $R$ and $\frac{R}{Nil(R)}$ is $G$-regular. Furthermore, we characterize $\mathbb{Z}G$-clean rings. Also, this paper is involved with investigating $\mathbb{F}_{2}C_{2}$ as a social group and measuring influence a member of it’s rather than others.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized f-clean rings

In this paper, we introduce the new notion of n-f-clean rings as a generalization of f-clean rings. Next, we investigate some properties of such rings. We prove that $M_n(R)$ is n-f-clean for any n-f-clean ring R. We also, get a condition under which the denitions of n-cleanness and n-f-cleanness are equivalent.

متن کامل

Strongly nil-clean corner rings

We show that if $R$ is a ring with an arbitrary idempotent $e$ such that $eRe$ and $(1-e)R(1-e)$ are both strongly nil-clean rings‎, ‎then $R/J(R)$ is nil-clean‎. ‎In particular‎, ‎under certain additional circumstances‎, ‎$R$ is also nil-clean‎. ‎These results somewhat improves on achievements due to Diesl in J‎. ‎Algebra (2013) and to Koc{s}an-Wang-Zhou in J‎. ‎Pure Appl‎. ‎Algebra (2016)‎. ‎...

متن کامل

WEAKLY g(x)-CLEAN RINGS

A ring $R$ with identity is called ``clean'' if $~$for every element $ain R$, there exist an idempotent $e$ and a unit $u$ in $R$ such that $a=u+e$. Let $C(R)$ denote the center of a ring $R$ and $g(x)$ be a polynomial in $C(R)[x]$. An element $rin R$ is called ``g(x)-clean'' if $r=u+s$ where $g(s)=0$ and $u$ is a unit of $R$ and, $R$ is $g(x)$-clean if every element is $g(x)$-clean. In this pa...

متن کامل

P-clean rings

Throughout this paper R denotes an associative ring with identity and all modules are unitary. We use the symbol U(R) to denote the group of units of R and Id(R) the set of idempotents of R, Un(R) the set of elements which are the sum of n units of R, UΣ(R) the set of elements each of which is the sum of finitely many units in R, RE(R) (URE(R)) the set of regular (unit regular) elements of R, a...

متن کامل

ON STRONGLY g(x)-CLEAN RINGS

Let R be an associative ring with identity, C(R) denote the center of R, and g(x) be a polynomial in the polynomial ring C(R)[x]. R is called strongly g(x)-clean if every element r ∈ R can be written as r = s+u with g(s) = 0, u a unit of R, and su = us. The relation between strongly g(x)-clean rings and strongly clean rings is determined, some general properties of strongly g(x)-clean rings are...

متن کامل

Some classes of strongly clean rings

A ring $R$ is a strongly clean ring if every element in $R$ is the sum of an idempotent and a unit that commutate. We construct some classes of strongly clean rings which have stable range one. It is shown that such cleanness of $2 imes 2$ matrices over commutative local rings is completely determined in terms of solvability of quadratic equations.

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 8  شماره 1

صفحات  25- 40

تاریخ انتشار 2021-02-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023